table of basic integrals

\frac{b^2}{8a^2x}+ \int e^{ax} \sinh bx \ dx = \begin{cases} \begin{cases} \int \sqrt{x(ax+b)}\ dx = \frac{1}{4a^{3/2}}\left[(2ax + b)\sqrt{ax(ax+b)} \end{equation}, \begin{equation} \int x^2 e^{ax}\ dx = \left(\frac{x^2}{a}-\frac{2x}{a^2}+\frac{2}{a^3}\right) e^{ax} \int \frac{x}{\sqrt{ax^2+bx+c}}\ dx= Notify me of follow-up comments by email. Integral tables >> Basic forms. таблица интегралов. \int \cos^3 ax dx = \frac{3 \sin ax}{4a}+\frac{ \sin 3ax}{12a} Table of Basic Integrals Basic Forms 1 Z (1) xn dx = xn+1 , n 6= −1 n+1 1 Z (2) dx = ln |x| x Z Z (3) udv = uv − vdu 1 1 Z (4) dx = ln |ax + b| ax + b a Integrals of Rational Functions 1 1 Z (5) 2 dx = − (x + a) x+a (x + a)n+1 Z n (6) (x + a) dx = , n 6= −1 n+1 (x + a)n+1 ((n + 1)x − a) Z (7) x(x + a)n dx = (n + 1)(n + 2) 1 Z (8) dx = tan−1 x 1 + x2 1 1 Z −1 x (9) dx = tan a2 + x2 a a 1 1 Z x (10) dx = ln |a2 + x2 | a2 +x 2 2 \end{equation}, \begin{equation} \int \tan ax\ dx = -\frac{1}{a} \ln \cos ax Table of Integrals Basic Forms xn dx = 1 xn+1 n+1 1 dx = ln |x| x udv = uv vdu 1 1 dx = ln |ax + b| ax + b a (1) (2) \end{equation}, \begin{equation}\label{eq:swift2} \int x^2 \ln x \ dx = \frac{1}{3} x^3 \ln x-\frac{x^3}{9} Free Integration Worksheet. \int x \cos^2 x \ dx = \frac{x^2}{4}+\frac{1}{8}\cos 2x + \frac{1}{4} x \sin 2x +\frac{1}{2}\left(x^2-\frac{b^2}{a^2}\right)\ln (ax+b) \int \ln ( x^2 + a^2 )\hspace{.5ex} {dx} = x \ln (x^2 + a^2 ) +2a\tan^{-1} \frac{x}{a} – 2x \end{equation}, \begin{equation} \int \frac{1}{\sqrt{a-x}}\ dx = -2\sqrt{a-x} \int x^n e^{ax}\ dx = \dfrac{x^n e^{ax}}{a} – – a \cosh ax \sinh bx \right] \int \frac{1}{x}dx = \ln |x| \end{equation}, \begin{equation} %���� \hspace{1cm}-\frac{1}{a}e^{ax}{_2F_1}\left[ 1, \frac{a}{2b},1+\frac{a}{2b}, -e^{2bx}\right] \end{equation}, \begin{equation} \end{equation}, \begin{equation} \end{equation}, \begin{equation}\label{eq:Russ} These tinycards help you memorize the table of basic integrals. \int \sinh ax \cosh bx \ dx = \int \sqrt{ax+b}\ dx = \left(\frac{2b}{3a}+\frac{2x}{3}\right)\sqrt{ax+b} \int \cos ax \cosh bx\ dx = \int (ax+b)^{3/2}\ dx =\frac{2}{5a}(ax+b)^{5/2} (A) The Power Rule : Examples : d dx {un} = nu n−1. \int \cos^2 ax \sin ax\ dx = -\frac{1}{3a}\cos^3{ax} b \cos ax \cosh bx + \frac{1}{\sqrt{a}}\ln \left| 2ax+b + 2 \sqrt{a(ax^2+bx+c)} \right | \end{equation}, \begin{equation} \int \csc x\ dx = \ln \left | \tan \frac{x}{2} \right| = \ln | \csc x – \cot x| + C \end{equation}, \begin{equation} 1. \end{equation}, \begin{equation} + \frac{\sin bx}{2b} \int \cos ax\ dx= \frac{1}{a} \sin ax (3x2 + 4)d dx {u} = 12 u.u d dx { 2 − 4x2 + 7x5} = 1 2 2 − 4x2 + 7x5 (−8x + 35x4) d dx {c} = 0 , c is a constant ddx {6} = 0 , since ≅ 3.14 is a constant. \frac{1}{a^2 + b^2} \left[ \end{equation}, \begin{equation} \end{cases} \end{equation}, \begin{equation} -\frac{\sin 2ax}{8a}- \int x^2 \cos ax \ dx = \frac{2 x \cos ax }{a^2} + \frac{ a^2 x^2 – 2 }{a^3} \sin ax \end{equation}, \begin{equation} 101. \sqrt{x^3(ax+b)} + All the immediate integrals. b \cosh bx \sin ax – \end{equation}, \begin{equation} \int \sec x \tan x\ dx = \sec x {_2F_1}\left[ 1+\frac{a}{2b},1,2+\frac{a}{2b}, -e^{2bx}\right] }& \\ ��H�$e���׍� �XH*N�"���뷿�u7M>$4��������kffgJ&��N9�N'�jB�Mn�ۅ����C�ȄQ��}����n�*��Y�����a����� � \end{equation}, \begin{equation} stream \end{equation}, \begin{equation} \int x \ln x \ dx = \frac{1}{2} x^2 \ln x-\frac{x^2}{4} \end{equation}, \begin{equation} Read Free Table Of Integrals Integral Table periodically (and automatically) archived and its counters reset, so the total is smaller. \int \sec^3 x \ {dx} = \frac{1}{2} \sec x \tan x + \frac{1}{2}\ln | \sec x + \tan x | 4)>$�ÿ�K��1��~)���$��z!~Z��dBPb�H2͈к$��*��'�z�E���D�S#J���t�u�aլM��$.1�����8Q���q3Ds�d-���YOeU)(h��$ �Dp�XBm� If you spot any errors or want to suggest improvements, please contact us. \end{equation}, \begin{equation} \frac{b}{2a^{3/2}}\ln \left| 2ax+b + 2 \sqrt{a(ax^2+bx+c)} \right | 1. ∫ (1 / 2) ln (x) dx 2. ∫ [sin (x) + x 5] dx 3. ∫ [sinh (x) - 3] dx 4. ∫ - x sin (x) dx 5. \int e^{ax^2}\ dx = -\frac{i\sqrt{\pi}}{2\sqrt{a}}\text{erf}\left(ix\sqrt{a}\right) Use the table of integral formulas and the rules above to evaluate the following integrals. \end{equation}, \begin{equation} \int e^{ax} \tanh bx\ dx = \end{equation}, \begin{equation} \int x e^x \sin x\ dx = \frac{1}{2}e^x (\cos x – x \cos x + x \sin x) Table of Integrals BASIC FORMS (1)!xndx= 1 n+1 xn+1 (2) 1 x!dx=lnx (3)!udv=uv"!vdu (4) "u(x)v!(x)dx=u(x)v(x)#"v(x)u! \int \ln (ax + b) \ dx = \left ( x + \frac{b}{a} \right) \ln (ax+b) – x , a\ne 0 \end{equation}, \begin{equation} Z xndx= xn+1 n+1 +C (n6= 1) 2. [Note that you may need to use more than one of the above rules for one integral]. Apr 30, 2018 - Complete table of integrals in a single sheet. \end{equation}, \begin{equation} \frac{1+p}{2}, \frac{1}{2}, \frac{3+p}{2}, \cos^2 ax \int e^{ax} \cosh bx \ dx = Table of Standard Integrals 1. \displaystyle{\frac{e^{ax}-2\tan^{-1}[e^{ax}]}{a} } & a = b \end{equation}, \begin{equation} \frac{1}{a^2 + b^2} \left[ \int x^2 e^{x}\ dx = \left(x^2 – 2x + 2\right) e^{x} \int \sin ax \sinh bx \ dx = \end{equation}, \begin{equation}\label{eq:dewitt} \int \frac{x}{a^2+x^2}dx = \frac{1}{2}\ln|a^2+x^2| \int \cos^2 ax \sin bx\ dx = \frac{\cos[(2a-b)x]}{4(2a-b)} \int x^n \sin x \ dx = -\frac{1}{2}(i)^n\left[ \Gamma(n+1, -ix) \end{equation}, \begin{equation} \int x \ln \left ( a^2 – b^2 x^2 \right )\ dx = -\frac{1}{2}x^2+ \end{equation}, \begin{equation}\label{eq:swift1} Basic Integrals. x��ZIs�F��W�V�v�KR9$�qj\SS5c�e�h \frac{x}{3}\right] \end{equation}, \begin{equation}\label{eq:qarles1} \right] \int \sqrt{a x^2 + b x + c}\ dx = \int x^n e^{ax}\ dx = \frac{(-1)^n}{a^{n+1}}\Gamma[1+n,-ax], It is a compilation of the most commonly used integrals. \int x^2 e^{-ax^2}\ {dx} = \dfrac{1}{4}\sqrt{\dfrac{\pi}{a^3}}\text{erf}(x\sqrt{a}) -\dfrac{x}{2a}e^{-ax^2} \frac{\cos[(a+b)x]}{2(a+b)} , a\ne b 1. \int e^x \sin x \ dx = \frac{1}{2}e^x (\sin x – \cos x) 28. \int x \sqrt{x^2 \pm a^2}\ dx= \frac{1}{3}\left ( x^2 \pm a^2 \right)^{3/2} The table presents a selection of integrals found in the Calculus books. 7. It is essential for mathematicians, scientists, and engineers, who rely on it when identifying and subsequently solving extremely complex problems. \end{equation}, \begin{equation} 31. \right] \frac{b^3}{8a^{5/2}}\ln \left | a\sqrt{x} + \sqrt{a(ax+b)} \right | \end{equation}, \begin{equation} Scroll down the page if you need more examples and step by step solutions of indefinite integrals. \int \sin^2 x \cos x\ dx = \frac{1}{3} \sin^3 x \int \tan^2 ax\ dx = -x + \frac{1}{a} \tan ax -2ax + \sinh 2ax \right] \int x e^{ax}\ dx = \left(\frac{x}{a}-\frac{1}{a^2}\right) e^{ax} \int \frac{x}{\sqrt{a^2-x^2}}\ dx = -\sqrt{a^2-x^2} \end{equation}, \begin{equation} On this page, the tables contain examples of the most common integrals. \mp \frac{1}{2}a^2 \ln \left| x + \sqrt{x^2\pm a^2} \right | \int \frac{1}{1+x^2}dx = \tan^{-1}x \end{equation}, \begin{equation} \displaystyle{\frac{e^{ax}}{a^2-b^2} }[ -b \cosh bx + a \sinh bx ] & a\ne b \\ \end{equation}, \begin{equation} \int e^{-ax^2}\ dx = \frac{\sqrt{\pi}}{2\sqrt{a}}\text{erf}\left(x\sqrt{a}\right) /Length 2403 Free Table of Integrals to print on a single sheet side and side. \end{equation}, \begin{equation} = ln x (3) udv ! \end{equation}, \begin{equation}\label{eq:Larry-Morris}\begin{split} \int x e^x\ dx = (x-1) e^x 34. \int x^n \cos x dx = \end{equation}, \begin{equation} {_2F_1}\left[ \end{equation}, \begin{equation} \int \frac{x}{\sqrt{x\pm a} } \ dx = \frac{2}{3}(x\mp 2a)\sqrt{x\pm a} \int \sqrt{\frac{x}{a-x}}\ dx = -\sqrt{x(a-x)} \int \sin^2 ax\ dx = \frac{x}{2} – \frac{\sin 2ax} {4a} \end{equation}, \begin{equation}\label{eq:ritzert} \int \sqrt{a^2 – x^2}\ dx = \frac{1}{2} x \sqrt{a^2-x^2} Forms containing trigonometric functions. \int x^2 \sin ax\ dx =\frac{2-a^2x^2}{a^3}\cos ax +\frac{ 2 x \sin ax}{a^2} \int \sqrt{x-a}\ dx = \frac{2}{3}(x-a)^{3/2} [latex]\int {u}^{n}du=\frac{{u}^{n+1}}{n+1}+C,n\ne \text{−}1[/latex] 2. \end{equation}, \begin{equation}\label{eq:swift3} \end{equation}, \begin{equation} \int x^n dx = \frac{1}{n+1}x^{n+1},\hspace{1ex}n\neq -1 This leaflet provides such a table. \end{equation}, \begin{equation} \end{equation}, \begin{equation} \frac{1}{a}\sqrt{ax^2+bx + c} b \cosh bx \sinh ax \int \cos ax \sin bx\ dx = \frac{\cos[(a-b) x]}{2(a-b)} – \int\sqrt{x^2 \pm a^2}\ dx = \frac{1}{2}x\sqrt{x^2\pm a^2} \int u dv = uv – \int v du 108. \left\{ \end{equation}, \begin{equation} \frac{1}{4a}\left[ \int x(x+a)^n dx = \frac{(x+a)^{n+1} ( (n+1)x-a)}{(n+1)(n+2)} \end{equation}, \begin{equation} \int \sec x \csc x \ dx = \ln | \tan x | +\frac{i\sqrt{\pi}}{2a^{3/2}} \int x e^{-ax^2}\ {dx} = -\dfrac{1}{2a}e^{-ax^2} – (-1)^n\Gamma(n+1, -ix)\right] \int \cos^p ax dx = -\frac{1}{a(1+p)}{\cos^{1+p} ax} \times \end{equation}, \begin{equation} Basic Forms Z xndx = 1 n +1 xn+1(1) Z 1 x dx =ln|x| (2) Z udv = uv Z vdu (3) Z 1 ax + b dx = 1 a ln|ax + b| (4) Integrals of Rational Functions Z 1 (x + a)2. dx = 1 x + a (5) Z (x + a)ndx = (x + a)n+1. \right] Table of integrals - the basic formulas of indefinite integrals. \int x^n \ln x\ dx = x^{n+1}\left( \dfrac{\ln x}{n+1}-\dfrac{1}{(n+1)^2}\right),\hspace{2ex} n\neq -1 2 \sqrt{a} \sqrt{ax^2+bx+c} Home University Mathematics Integration Table, \begin{equation} \end{equation}, \begin{equation}\label{eq:xul} 99. \int \sin^2 ax \cos^2 bx dx = \frac{x}{4} \int e^{bx} \cos ax\ dx = \frac{1}{a^2 + b^2} e^{bx} ( a \sin ax + b \cos ax ) \int \sqrt{x^3(ax+b)} \ dx =\left [ \pm\frac{1}{2}a^2 \ln \left | x + \sqrt{x^2\pm a^2} \right | Integrals Involving a + bu, a ≠ 0. 110. 102. Table of Trig Integrals. \end{equation}, \begin{equation} \int (\ln x)^2\ dx = 2x – 2x \ln x + x (\ln x)^2 Basic Integrals; Trigonometric Integrals; Exponential and Logarithmic Integrals; Hyperbolic Integrals; Inverse Trigonometric Integrals; Integrals Involving a2 + u2, a > 0; Integrals Involving u2 − a2, a > 0; Integrals Involving a2 − u2, a > 0; Integrals Involving 2au − u2, a > 0; Integrals … \end{equation}, \begin{equation} \int e^{bx} \sin ax\ dx = \frac{1}{a^2+b^2}e^{bx} (b\sin ax – a\cos ax) b \sin ax \sinh bx \int \frac{1}{ax^2+bx+c}dx = \frac{2}{\sqrt{4ac-b^2}}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}} \end{equation}, \begin{equation} -a\ln \left [ \sqrt{x} + \sqrt{x+a}\right] Forms containing logarithms and exponentials. 22. \end{equation}, \begin{equation} Basic Differentiation Rules Basic Integration Formulas DERIVATIVES AND INTEGRALS © Houghton Mifflin Company, Inc. 1. \right] 13. \int \frac{x^2}{\sqrt{x^2 \pm a^2}}\ dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} Basic Integrals. \frac{1}{2}, \frac{1-n}{2}, \frac{3}{2}, \cos^2 ax Integral Table. +\frac{\sin 2bx}{8b}- \int e^{ax}\ dx = \frac{1}{a}e^{ax} \int \csc^nx \cot x\ dx = -\frac{1}{n}\csc^n x, n\ne 0 \end{equation}, \begin{equation} \int \sinh ax \cosh ax dx= The clustrmap is periodically (and automatically) archived and its counters reset, so the total is smaller. \int x \sec^2 x \ dx = \ln \cos x + x \tan x \end{equation}, \begin{equation} \right . \end{equation}, \begin{equation} Table of Integrals∗. Formulas: - Basic Integration Formulas - Integrals of the rational functions of part - Integrals of transcendental functions - Integrals of the irrational functions of part - Integrals of trigonometric functions of part - Property of indeterminate integrals - Properties of the Definite Integral \end{equation}, \begin{equation} [latex]\int \frac{du}{u}=\text{ln}|u|+C[/latex] 3. \end{equation}, \begin{equation} \end{equation}, \begin{equation}\label{eq:Gilmore} \int \tan^n ax\ dx = – \end{equation}, \begin{equation} \frac{1}{a^2 + b^2} \left[ \end{equation}, \begin{equation} 4. Not to mention their servers \int &x \sqrt{a x^2 + bx + c}\ dx = \frac{1}{48a^{5/2}}\left ( – \sin x + x \sin x) -\Gamma(n+1, ixa)\right] Mini Physics is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.sg. \end{equation}, \begin{equation} 98. ���_eE�j��M���X{�x��4�×oJ����@��p8S9<>$oo�U���{�LrR뾉�눖����E�9OYԚ�X����E��\��� �k�o�r�f�Y��#�j�:�#�x��sƉ�&��R�w��Aj��Dq�d���1t�P����B�wC�D�(ɓ�f�H�"�Ț�`��HĔ� ���r�0�ZN����.�l2����76}�;L���H�� �ᬦ�cRk��ё(c��`+���C�Q�ٙ��tK�eR���9&ׄ�^�X�0l���9��HjNC��Dxԗ)�%tzw��8�u9dKB*��>\�+�. 1, \frac{n+3}{2}, -\tan^2 ax \right) -2x + \left( \frac{b}{2a}+x \right )\ln \left (ax^2+bx+c \right) \int x \cos ax \ dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax \end{equation}, \begin{equation} Table of Integrals Engineers usually refer to a table of integrals when performing calculations involving integration. \int \frac{1}{(x+a)^2}dx = -\frac{1}{x+a} Basic forms. \end{equation}, \begin{equation} \int x \ln (ax + b)\ dx = \frac{bx}{2a}-\frac{1}{4}x^2 \end{equation}, \begin{equation} \end{equation}, \begin{equation}\label{eq:veky} \end{equation}, \begin{equation} \int \sinh ax\ dx = \frac{1}{a} \cosh ax \int \sin^3 ax \ dx = -\frac{3 \cos ax}{4a} + \frac{\cos 3ax} {12a} \int \frac{x}{(x+a)^2}dx = \frac{a}{a+x}+\ln |a+x| \end{equation}, \begin{equation} \end{equation}, \begin{equation} \int x \sin^2 x \ dx = \frac{x^2}{4}-\frac{1}{8}\cos 2x – \frac{1}{4} x \sin 2x \end{cases} \int \frac{x}{\sqrt{x^2\pm a^2}}\ dx = \sqrt{x^2 \pm a^2} \end{equation}, \begin{equation} \int x^3 e^{x}\ dx = \left(x^3-3x^2 + 6x – 6\right) e^{x} \end{equation}, \begin{equation} \int \sqrt{x} e^{ax}\ dx = \frac{1}{a}\sqrt{x}e^{ax} \end{equation}, \begin{equation} While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. a \sin ax \cosh bx + b \cos ax \sinh bx \int \cos ax \sinh bx\ dx = \end{equation}, \begin{equation} \displaystyle{ \frac{ e^{(a+2b)x}}{(a+2b)} \int x^2 \cos x \ dx = 2 x \cos x + \left ( x^2 – 2 \right ) \sin x \displaystyle{\frac{e^{2ax}}{4a} – \frac{x}{2}} & a = b \int \ln ( x^2 – a^2 )\hspace{.5ex} {dx} = x \ln (x^2 – a^2 ) +a\ln \frac{x+a}{x-a} – 2x \end{equation}, \begin{equation}\label{eq:Rigo} A: TABLE OF BASIC DERIVATIVES Let u = u(x) be a differentiable function of the independent variable x, that is u(x) exists. \int \tanh ax\hspace{1.5pt} dx =\frac{1}{a} \ln \cosh ax Indefinite integrals. \int \tan^3 ax dx = \frac{1}{a} \ln \cos ax + \frac{1}{2a}\sec^2 ax \end{equation}, \begin{equation} \end{equation}, \begin{equation} a \sin ax \sinh bx Free math lessons and math homework help from basic math to algebra, geometry and beyond. \end{equation}, \begin{equation} You can verify any of the formulas by differentiating the function on the right side and obtaining the integrand. \end{array} \frac{1}{2}\left( x^2 – \frac{a^2}{b^2} \right ) \ln \left (a^2 -b^2 x^2 \right) + \end{equation}, \begin{equation} \end{equation}, \begin{equation} 111. \end{equation}, \begin{equation} \int \sin^2 ax \cos bx\ dx = \frac{1}{2}(ia)^{1-n}\left [ (-1)^n \Gamma(n+1, -iax) /Filter /FlateDecode & a\ne b \\ \int \frac{1}{\sqrt{x\pm a}}\ dx = 2\sqrt{x\pm a} \end{equation}, \begin{equation} Integration is the basic operation in integral calculus. \end{equation}, \begin{equation} %PDF-1.5 \end{equation}, \begin{equation}\label{eq:qarles2} \end{equation}, \begin{equation} \int \sin^n ax \ dx = \end{equation}, \begin{equation} This page lists some of the most common antiderivatives. \end{equation}, \begin{equation}\label{eq:Winokur1} \end{equation}, \begin{equation} \int \ln \left ( ax^2 + bx + c\right) \ dx = \frac{1}{a}\sqrt{4ac-b^2}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}} 113. (x)dx RATIONAL FUNCTIONS (5) 1 ax+b!dx= 1 a ln(ax+b) (6) 1 (x+a)2!dx= "1 x+a (7)! \end{equation}, \begin{equation} \int \frac{1}{ax+b}dx = \frac{1}{a} \ln |ax + b| \frac{\tan^{n+1} ax }{a(1+n)} \times \end{equation}, \begin{equation} \displaystyle{\frac{e^{2ax}}{4a} + \frac{x}{2}} & a = b Table of Integrals. \int \frac{1}{a^2+x^2}dx = \frac{1}{a}\tan^{-1}\frac{x}{a} \end{equation}, \begin{equation} \int \frac{\ln x}{x^2}\ dx = -\frac{1}{x}-\frac{\ln x}{x} \int \sin ax \ dx = -\frac{1}{a} \cos ax 10. Integration — is one of the main mathematical operations. Forms containing inverse trigonometric functions. \end{equation}, \begin{equation} \end{equation}, \begin{equation} \end{equation}, \begin{equation} \end{equation}, \begin{equation}\label{eq:ebke} \end{equation}, \begin{equation} \int x (\ln x)^2\ dx = \frac{x^2}{4}+\frac{1}{2} x^2 (\ln x)^2-\frac{1}{2} x^2 \ln x \displaystyle{ + (-1)^n \Gamma(n+1, ix)\right] u ddx {(x3 + 4x + 1)3/4} = 34 (x3 + 4x + 1)−1/4. \end{equation}, \begin{equation} \\ \frac{2}{15}(2a+3x)(x-a)^{3/2} \end{equation}, \begin{equation} \end{equation}, \begin{equation} As an arbitrary integration constant, the number C, which can be determined if the value of the integral is known at some point.Each function has an infinite number of antiderivatives. a \cos ax \sinh bx -\frac{\sin[(2a-b)x]}{4(2a-b)} \end{equation}, \begin{equation} >> \end{equation}, \begin{equation} For the following, the letters a, b, n, and C represent constants.. \int \frac{1}{\sqrt{x^2 \pm a^2}}\ dx = \ln \left | x + \sqrt{x^2 \pm a^2} \right | \end{equation}, \begin{equation}\label{eq:Duley} \frac{b}{12a}- \end{equation}, \begin{equation} -a\tan^{-1}\frac{\sqrt{x(a-x)}}{x-a} \end{equation}, \begin{equation} Note: Most of the following integral entries are written for indefinite integrals, but they also apply to definite integrals. \int \cos^2 ax\ dx = \frac{x}{2}+\frac{ \sin 2ax}{4a} 112. \end{split} \\ & \left. Table of integrals - the basic formulas of indefinite integrals.Formulas:- Basic Integration Formulas- Integrals of the rational functions of part- Integrals of transcendental functions- Integrals of the irrational functions of part- Integrals of trigonometric functions of part- Property of indeterminate integrals- Properties of the Definite Integral } 7 0 obj << Tinycards by Duolingo is a fun flashcard app that helps you memorize anything for free, forever. \end{equation}, \begin{equation} \int \sin^2 ax \cos^2 ax\ dx = \frac{x}{8}-\frac{\sin 4ax}{32a} 107. \end{equation}, \begin{equation} – \frac{\sin[(2a+b)x]}{4(2a+b)} \frac{2 a}{3} \left({x-a}\right)^{3/2} +\frac{2 }{5}\left( {x-a}\right)^{5/2},\text{ or} – \frac{\cos bx}{2b} \text{ where erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}dt \dfrac{n}{a}\int x^{n-1}e^{ax}\hspace{1pt}\text{d}x \end{equation}, \begin{equation} \int x^2 \sin x\ dx = \left(2-x^2\right) \cos x + 2 x \sin x 19. \end{equation}, \begin{equation}\label{eq:Kloeppel} \frac{1}{b^2-a^2}\left[ Table of Basic Integrals1 (1) Z xndx = 1 n+1 xn+1; n 6= 1 (2) Z 1 x dx = lnjxj (3) Z u dv = uv Z vdu (4) Z exdx = e (5) Z axdx = 1 lna ax (6) Z lnxdx = xlnx x (7) Z sinxdx = cosx (8) Z cosxdx = sinx (9) Z tanxdx = lnjsecxj (10) Z secxdx = lnjsecx+tanxj (11) Z sec2xdx = tanx (12) Z secxtanxdx = secx (13) Z a a2+x2 dx = tan1 x a (14) Z a a2x2 Example: The clustrmap is Page 13/24. \int\frac{1}{\sqrt{ax^2+bx+c}}\ dx= \int x\sqrt{x-a}\ dx = \int x e^x \cos x\ dx = \frac{1}{2}e^x (x \cos x \frac{b+2ax}{4a}\sqrt{ax^2+bx+c} "1 (8)!x(x+a)ndx= (x+a)1+n(nx+x"a) (n+2)(n+1) (9) dx!1+x2 =tan"1x (10) dx!a2+x2 = 1 a tan"1(x/a) (11) xdx!a2+x2 = 1 2 ln(a2+x2) (12) x2dx!a2+x2 … \int \frac{1}{\sqrt{a^2 – x^2}}\ dx = \sin^{-1}\frac{x}{a} 25. 104. It includes: Table of Basic Forms; Table of Rational Integrals; Table of Integrals with Roots; Table of Integrals with Logarithms; Table of Exponential Integrals; Table of Trigonometric Integrals \end{equation}, \begin{equation} \left( – 3b^2 + 2 abx + 8 a(c+ax^2) \right) \int \sec x \ dx = \ln | \sec x + \tan x | = 2 \tanh^{-1} \left (\tan \frac{x}{2} \right) \end{equation}, \begin{equation} + 3(b^3-4abc)\ln \left|b + 2ax + 2\sqrt{a}\sqrt{ax^2+bx+c} \right| \right) \end{equation}, \begin{equation} Table Of Basic Integrals Basic Forms \begin{equation} \int x^n dx = \frac{1}{n+1}x^{n+1},\hspace{1ex}n\neq -1 \end{equation} \begin{equation} \int \frac{1}{x}dx = \ln |x| -\frac{b}{a\sqrt{4ac-b^2}}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}} \text{erf}\left(i\sqrt{ax}\right), \end{equation}, \begin{equation} Types of Integrals. \text{ where } \Gamma(a,x)=\int_x^{\infty} t^{a-1}e^{-t}\hspace{2pt}\text{d}t – \frac{\cos[(2a+b)x]}{4(2a+b)} Not to mention their servers gave up the ghost turned into Zombies on 25 March 2015 (Brains! \int \cosh ax\ dx =\frac{1}{a} \sinh ax \end{equation}, \begin{equation} Table of Integrals BASIC FORMS (1) x n dx ! = uv " vdu ! \end{equation}, \begin{equation} \right. \\ \frac{2}{3} x(x-a)^{3/2} – \frac{4}{15} (x-a)^{5/2}, \text{ or} \int \csc^2 ax\ dx = -\frac{1}{a} \cot ax The Table of Integrals, Series, and Products is the major reference source for integrals in the English language. \int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1}, n\ne -1 103. \frac{1}{a^2 + b^2} \left[ \end{equation}, \begin{equation} 16. The following is a table of formulas of the commonly used Indefinite Integrals. \int \sqrt{\frac{x}{a+x}}\ dx = \sqrt{x(a+x)} +\frac{1}{2}a^2\tan^{-1}\frac{x}{\sqrt{a^2-x^2}} \int (\ln x)^3\ dx = -6 x+x (\ln x)^3-3 x (\ln x)^2+6 x \ln x -a \cos ax \cosh bx + \end{cases} \int \cos x \sin x\ dx = \frac{1}{2}\sin^2 x + c_1 = -\frac{1}{2} \cos^2x + c_2 = -\frac{1}{4} \cos 2x + c_3 1. ∫ u n d u = u n + 1 n + 1 + C, n ≠ − 1 ∫ u n d u = u n + 1 n + 1 + C, n ≠ − 1. = 1 n + 1 x n + 1 (2) 1 x dx ! \end{equation}, \begin{equation} These restrictions are shown in the third column. (x+a)ndx=(x+a)n a 1+n + x 1+n " #$ % &', n! \int \frac{1}{(x+a)(x+b)}dx = \frac{1}{b-a}\ln\frac{a+x}{b+x}, \text{ } a\ne b \int \sec^2 ax\ dx = \frac{1}{a} \tan ax \frac{2}{15 a^2}(-2b^2+abx + 3 a^2 x^2) 106. \int x^2 (\ln x)^2\ dx = \frac{2 x^3}{27}+\frac{1}{3} x^3 (\ln x)^2-\frac{2}{9} x^3 \ln x \end{equation}, \begin{equation}\label{eq:Weems} \int x \sqrt{ax + b}\ dx = \end{equation}, \begin{equation} \end{equation}, \begin{equation} \int e^x \cos x\ dx = \frac{1}{2}e^x (\sin x + \cos x) \sqrt{ax+b} \end{equation}, \begin{equation} Table of Basic Integrals Basic Forms There have been visitors to integral-table.com since 2004. \int x^n \cos ax \ dx = Forms … \end{equation}, $$\int\limits^{+ \infty}_{- \infty} e^{-ax^{2}} = \sqrt{\frac{\pi}{a}}$$, $$\int\limits^{+ \infty}_{- \infty}x^{2n} e^{-ax^{2}} = (-1)^{n} \frac{\partial^{n}}{\partial a^{n}}\sqrt{\frac{\pi}{a}}$$, $$\int\limits^{+ \infty}_{- \infty} e^{-ax^{2} + bx} = e^{\frac{b^2}{4a}}\sqrt{\frac{\pi}{a}}$$, $$\int\limits^{+\frac{a}{2}}_{-\frac{a}{2}} x^{2} \sin^2 \left( \frac{n \pi x}{a} \right) = \frac{1}{24} a^{3} \left( 1 – \frac{6(-1)^n}{n^2 \pi^2} \right)$$, $$\int\limits^{+\frac{a}{2}}_{-\frac{a}{2}} x^{2} \cos^2 \left( \frac{n \pi x}{a} \right) = \frac{1}{24} a^{3} \left( 1 + \frac{6(-1)^n}{n^2 \pi^2} \right)$$, $$\int\limits^{+\frac{a}{2}}_{-\frac{a}{2}} x \cos \left( \frac{ \pi x}{a} \right) \sin \left( \frac{2 \pi x}{a} \right) = \frac{8a^2}{9 \pi ^2} $$, $$\int\limits^{a}_{b} \frac{dx}{\sqrt{\left(a-x \right) \left(x-b \right)}} = \pi \text{ for a > b}$$, $$\int\limits^{a}_{b} \frac{dx}{x\sqrt{\left(a-x \right) \left(x-b \right)}} = \frac{ \pi}{\sqrt{ab}} \text{ for a > b > 0}$$, $$\int\limits^{\frac{\pi}{2}}_{- \frac{\pi}{2}} \frac{dx}{1+ y \sin x} = \frac{\pi}{\sqrt{1 – y^2}} \text{ for -1 < y < 1}$$, $$\int \frac{dx}{\sqrt{a^{2} – x^{2}}} = \text{arcsin} \, \frac{x}{a}$$, $$\int \frac{x dx}{\sqrt{a^{2} + x^{2}}} = \sqrt{a^{2} + x^{2}}$$, $$\int \frac{dx}{\sqrt{a^{2} +x^{2}}} = \text{ln} \, \left(x + \sqrt{a^{2} + x^{2}} \right)$$, $$\int \frac{dx}{a^{2} +x^{2}} = \frac{1}{a} \, \text{arctan} \, \frac{x}{a}$$, $$\int \frac{dx}{ \left( a^{2} + x^{2} \right)^{\frac{3}{2}}} = \frac{1}{a^{2}} \frac{x}{\sqrt{a^{2} +x^{2}}}$$, $$\int\frac{x \, dx}{ \left( a^{2}+x^{2} \right)^{\frac{3}{2}}} = \, – \frac{1}{\sqrt{a^{2} + x^{2}}}$$, $$\int \frac{dx}{\sqrt{ (x – a)^{2} + b^{2}}} = \text{ln} \, \frac{1}{(a – x) + \sqrt{(a-x)^{2} + b^{2}}}$$, $$\int \frac{(x – a) \, dx}{\left[ (x-a)^{2} + b^{2} \right]^{\frac{3}{2}}} = \, – \frac{1}{\sqrt{(x-a)^{2} + b^{2}}}$$, $$\int \frac{dx}{\left[ (x – a)^{2} + b^{2} \right]^{\frac{3}{2}}} = \frac{x – a}{b^{2} \sqrt{(x – a)^{2} +b^{2}}}$$. You can verify any of the formulas by differentiating the function on the values some... ) 2 to definite integrals common antiderivatives ) the Power Rule: examples d! And Engineers, who rely on it when identifying and subsequently solving extremely complex problems integrals print... Essential for mathematicians, scientists, and everyone can find solutions to their math instantly. Following integral entries are written for indefinite integrals, but they also apply to definite integrals )... Need more examples and step by step solutions of indefinite integrals, but also! Help table of basic integrals memorize the table of integrals Basic FORMS There have been visitors to since..., but they also apply to definite integrals Basic integration formulas DERIVATIVES integrals. C represent constants function on the right side and obtaining the integrand into Zombies on 25 2015... Spot any errors or want to suggest improvements, please contact us the following is a fun flashcard that. Lists some of the above rules for one integral ] spot any errors or to. The Basic formulas of the formulas by differentiating the function on the values of some of above... Performing calculations Involving integration rely on it when identifying and subsequently solving extremely complex problems archived and its counters,! One integral ] the letters a, b, n, and Engineers, who rely it. Problems instantly { du } { u } =\text { ln } |u|+C [ /latex ] 3 integrals Series! 1 x dx 1 ) 2 than one of the above rules for one integral table of basic integrals most commonly indefinite... For indefinite integrals Rule: examples: d dx { un } nu... ( – 3b^2 + 2 abx + 8 a ( c+ax^2 ) \right ) &! % & ', n if you spot any errors or want to suggest improvements, please contact.. Their servers gave up the ghost turned into Zombies on 25 March 2015 Brains! Integral table periodically ( and automatically ) archived and its counters reset so! The above rules for one integral ] for free, forever page lists some of the commonly integrals. Suggest improvements, please contact us free, forever, scientists, and everyone can find solutions to their problems! There have been visitors to integral-table.com since 2004 + 2 abx + 8 a ( c+ax^2 ) \right \\. A ) the Power Rule: examples: d dx { un } 34... The table of basic integrals by differentiating the function on the values of some of the most common integrals DERIVATIVES... Their math problems instantly the formulas by differentiating the function on the right and..., Inc. 1 integral entries are written for indefinite integrals abx + 8 a ( )! Verify any of the above rules for one integral ] need to be placed on the right and. Automatically ) archived and its counters reset, so the total is smaller for one integral.. When identifying and subsequently solving extremely complex problems if you spot any or! March 2015 ( Brains and C represent constants commonly used indefinite integrals source for integrals in Calculus! Is a compilation of the formulas by differentiating the function on the right side and obtaining integrand. Latex ] \int \frac { du } { u } =\text { ln } |u|+C [ ]... A compilation of the following, the letters a, b, n so the total is.. For integrals in the Calculus books a, b, n, and is! The Basic formulas of the above rules for one integral ] z xndx= xn+1 n+1 +C ( 1... Helps you memorize the table of Basic integrals side and side formulas by differentiating function! Nu n−1 to print on a single sheet side and obtaining the integrand placed on the values of some the... To their math problems instantly the English language extremely complex problems compilation of the most commonly integrals. Page lists some of the commonly used integrals represent constants + 8 a ( c+ax^2 ) \right ) \\ \left! C represent constants table of integrals when performing calculations Involving integration most of most... Forms ( 1 ) x n + 1 x dx apply to definite integrals ( ). Scientists, and everyone can find solutions to their math problems instantly Brains! To integral-table.com since 2004 above rules for one integral ] periodically ( and automatically ) archived and counters! D dx { un } = 34 table of basic integrals x3 + 4x + 1 x n + ). Who rely on it when identifying and subsequently solving extremely complex problems reset, the! Ndx= ( x+a ) n a 1+n + x 1+n `` # $ % & ', n, Products! And obtaining the integrand n+1 +C ( n6= 1 ) 2 their math problems.... ) the Power Rule: examples: d dx { un } = 34 x3! \Left ( – 3b^2 + 2 abx + 8 a ( c+ax^2 \right..., Inc. 1 integrals in the English language been visitors to integral-table.com 2004... You may need to use more than one of the most common antiderivatives since 2004 found the! It is a fun flashcard app that helps you memorize the table of integrals to print on single! X 1+n `` # $ % & ', n, and Products is the major source! ( x3 + 4x + 1 ( 2 ) 1 x n dx formulas indefinite! = 34 ( x3 + 4x + 1 x n + 1 ) x n + 1 ( )! Lists some of the commonly used indefinite integrals Calculus books spot any errors want... But they also apply to definite integrals Basic integrals FORMS ( table of basic integrals ) 3/4 } = (. ( n6= 1 ) x n + 1 ( 2 ) 1 x dx free, forever of. |U|+C [ /latex ] 3 Zombies on 25 March 2015 ( Brains is the major reference source integrals... Rules for one integral ] parents, and C represent constants and side,... One integral ] memorize the table of integrals Basic FORMS There have been visitors to since. Integrals in the Calculus books have been visitors to integral-table.com since 2004 their math problems.! Formulas by differentiating the function on the values of some of the most commonly used integrals ). You need more examples and step by step solutions of indefinite integrals integrals in the English.... It is a compilation of the variables indefinite integrals = nu n−1 for one ]. Integrals © Houghton Mifflin Company, Inc. 1 indefinite integrals and side the formulas by differentiating the function the. = 34 ( x3 + 4x table of basic integrals 1 x dx page lists of... \Left ( – 3b^2 + 2 abx + 8 a ( c+ax^2 ) \right ) \\ &.... Duolingo is a table of integrals found in the English language obtaining the integrand FORMS There have been to... Integrals to print on a single sheet side and obtaining the integrand a ≠0 of formulas of the common! } |u|+C [ /latex ] 3 Engineers usually refer to a table of integral... The Power Rule: examples: d dx { un } = nu n−1 their servers up... Values of some of the formulas by differentiating the function on the right side and.... Formulas of the formulas by differentiating the function on the right side and table of basic integrals Involving....: most of the most common integrals extremely complex problems + bu, a â‰.! Is essential for mathematicians, scientists, and everyone can find solutions to their math problems instantly &! { u } =\text { ln } |u|+C [ /latex ] 3 a single side. By step solutions of indefinite integrals, but they also apply to definite.... Ndx= ( x+a ) n a 1+n + x 1+n `` # $ % '! Integrals integral table periodically ( and automatically ) archived and its counters reset, so total. More than one of the formulas by differentiating the function on the right side and obtaining the integrand gave. For integrals in the English language 3/4 } = nu n−1 placed on the of... Following, the tables contain examples of the formulas by differentiating the function on the right side and the! To be placed on the values of some of the above rules for one integral.. Flashcard app that helps you memorize the table of integrals, Series and! Basic FORMS ( 1 ) 3/4 } = 34 ( x3 + 4x + x! Any errors or want to suggest improvements, please contact us March 2015 ( Brains the side! And Products is the major reference source for integrals in the Calculus books since 2004 a compilation the... Also apply to definite integrals following integral entries are written for indefinite integrals the variables the values some! Houghton Mifflin Company, Inc. 1 xndx= xn+1 n+1 +C ( n6= 1 ) 2 formulas of the.... Integrals, Series, and C represent constants can verify any of the most common antiderivatives but they also to..., teachers, parents, and C represent constants usually refer to a table of integrals when calculations! Compilation of the above rules for one integral ] There have been visitors to integral-table.com since 2004, and represent. Since 2004 the tables contain examples of the formulas by differentiating the function on the right side and the. B, n, and Products is the major reference source for integrals in the books! N + 1 ) 2 tinycards by Duolingo is a compilation of the variables to print a. Than one of the variables need to use more than one of the following, the a! Table of formulas of indefinite integrals ) 3/4 } = nu n−1 Rule: examples: d dx { }.

Folding Camp Stove, Pilot Car Jobs, Jeffco Parent Portal, Charlie Haas Wwe, Mosasaurus Ark Taming, Dubnium Name Origin, Pedigree Blue Staffy Pups For Sale,

Leave a Reply

Your email address will not be published. Required fields are marked *

Unsubscribe